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ABSTRACT OF THE DISSERTATION

Resonance Effects on Shoaling Surface Gravity Waves

by

Michael Harris Freilich

Doctor of Philosophy in Oceanography

University of California, San Diego, 1982

Professor Robert T. Guza, Chairman

Two nonlinear models describing the shoaling of unidirectional

surface gravity waves are developed. The models, based on variants of

* the Boussinesq equations for a sloping bottom (Peregrine (1967)) are

!* cast as a set of coupled evolution equations for the amplitudes and

phases of the Fourier modes of the wave field. The models contain no

free or empirically determined parameters, and accept arbitrary, broad

banded (in frequency) inputs. Resonant and near resonant triad
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interactions across the entire wind-wave frequency band (0.05-0.25 Hz)

provide the mechanism for nonlinear cross spectral energy transfers

and phase modifications as the waves propogate shoreward through the

shoaling region (10 m - 3 m depth). A numerical code has been

implemented to integrate the coupled evolution equations.

A major field experiment designed to test the operational

validity of the models was undertaken in the summer of 1980. Dense

instrumentation of the shoaling region provided data on wave

parameters over a wide range of conditions. Three representative data

sets illustrating different initial spectral shape and subsequent

evolution are compared in detail to predictions of the shoaling models

and linear, finite-depth theory. The nonlinear shoaling models

accurately predict Fourier coefficients of the wave field through the

shoaling region for all data sets. Differences between the model

predictions can be related to differences in the linear dispersion

relations of the models. Slowly varying, linear, finite-depth theory

is found to be a poor predictor of Fourier coefficients in regions

where significant evolution of the power spectrum of sea-surface

elevation was observed, whereas the nonlinear models are good

predictors in precisely these regions. However, where such evolution

was not observed, linear, finite-depth theory is a superior predictor

of both spectral density and phases, thus verifying the validity of

the linear, finite-depth dispersion relation in at least some areas of

both frequency and physical space in the shoaling region. Nonlinear

models such as those derived here are necessary, however, to predict

Fourier coefficients over the broad range of wave conditions typically

xvi<I
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encountered.

Measurements of directional spectra at two depths are used to

partially explain coherence spectra between models and data. The

Maximum Likelihood Estimator directional analysis is also used to

indicate that seaward-propogating energy in the shoaling region is

probably less than 10% of incoming energy in the wind-wave band,

although precise limits await design and implementation of a special-

purpose, data-adaptive estimator.

Bottom slope is found to influence the nonlinear shoaling

transformation only indirectly. Finally, some simplifications to the

full, nonlinear models are suggested.
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I. INTRODUCTION

As surface gravity waves approach a beach their shapes change

dramatically until, in most cases, they break. The aim of the work

reported here is to develop and test a model describing the

transformations that occur as a spectrum of surface gravity waves

propagates shoreward over a mildly sloping bottom. Although wave

breaking and subsequent surf-zone fluid motions are both visually

spectacular and scientifically important for such processes as

sediment transport, the present work will concentrate on the "shoaling

region," defined here to be the area between approximately lOm depth

and 3m depth, outside and specifically excluding the break zone. On

typical Southern California beaches, this shoaling region has a

horizontal extent of 300 m to 1000 m. In order to be applicable to

field situations, any shoaling model must allow for a complicated wave

field characterized by a broad, arbitrarily shaped frequency spectrum.

In some areas, due to local beach orientation with respect to the

larger scale coastline or offshore topographic features, a realistic

shoaling model must also accommodate waves incident at a relatively

high angle to the bottom contours at the outer edge of the shoaling

region. The models discussed here allow broad frequency spectra but

are restricted to waves almost normally incident on a beach with

straight, parallel contours. Results from a field experiment at a

site satisfying these requirements are used here to test the shoaling

models.

Linear theory has often been used as the basis for shoaling

wave models. Assuming that the nonlinear terms in the finite-depth,

!1
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inviscid, irrotational equations of motion and boundary conditions are

small, several authors (Hanson (1926), Friedrichs (1948), Stoker

(1957), for a review see Whitham (1979)) have found exact solutions

for the case where beach slope hx is given by hx = MiT/2N, M and N

integers. For the physically interesting case of small bottom slope,

approximate (WKB) solutions have been obtained on the assumption of no

reflected energy. In these solutions, the wave locally satisfies

flat-bottom equations; slow changes in amplitude and phase due to

varying depth are obtained by satisfying solubility conditions at the

next order in an expansion in bottom slope (Chu and Mei (1970)). The

amplitude changes predicted by the WKB solution are of course equal to

those obtained by applying conservation of lowest-order energy flux to

the lowest order solution (Rayleigh (1911)).

Because of the linear nature of the governing equations,

solutions for motions with differing frequencies can be superposed to

satisfy any arbitrary conditions at a given on-offshore point. Slowly

varying, linear theory is roughly consistent with observations of rms

shoaling wave heights (to the 20% level), but some spectral features

are apparently due to nonlinear effects (Guza and Thornton (1980)).

It seems intuitively clear that the processes immediately preceeding

wave breaking are essentially nonlinear. As there are well known

techniques for incorporating at least weak nonlinearity into a

physical problem, attention has naturally turned toward nonlinear

aspects of wave shoaling.

Considerable effort has been expended in attempts to use

Stokes-type perturbation expansions on the full, finite-depth

~.
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equations of motion and boundary conditions for waves over a sloping

bottom. (See for instance Skjelbrea and Hendrickson (1960), LeMehaute

and Webb (1964), Chu and Mei (1970).) With the exception of Chu and

Mei (1970) (who explicitly expand in terms of bottom slope), all

dependent variables are expanded in a small parameter (found to be

equivalent to the Ursell number ak/(kh)3  ). Temporally periodic

solutions composed of the primary wave and its forced harmonics are

found, reducing to the classic Stokes (1847) solution for the case of

a flat bottom. The forced harmonics cannot grow to be large (or even

comparable) compared with the fundamental. Bottom slope is generally

considered to be of a higher order than that to which expansions are

carried, and thus WKB energy flux arguments can be applied as in the

linear theory. Solutions are steady in the sense that amplitudes of

the fundamental and harmonics would not change in the absence of the

sloping bottom.

The necessity of the Ursell number remaining small in order to

justify the low-order truncation of the series expansion is a

particularly stringent restriction for long waves in shallow water

characteristic of the shoaling region. The applicability of slowly

varying Stokes theory is thus suspect. Fortunately, shallow water

approximations to the equations of motion can be derived and have been

found to be considerably more tractable. In the limit of very long

waves in very shallow water, the classic shallow water equations

(Stoker (1957), Whitham (1979)) can be used. Carrier and Greenspan

(1958) found. an exact solution of these equations for the purely

reflective problem of non-breaking waves on a sloping beach. However,

h -"I a ...... ,v L,
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the Carrier and Greenspan solution suffers from restriction to very

shallow water in much the same way that the Stokes solutions are

essentially restricted to deeper water. Boussnesq (1871) derived a

set of evolution equations containing terms accounting for weak

dispersion due to finite depth and weak nonlinearity due to finite

amplitude. Korteweg and deVries (1895, hereafter K-dV) followed with

a single equation describing a similar system supporting

unidirectional wave motion only. Both Boussinesq and K-dV obtained

exact solutions of their equations describing waves of permanent form

in water of constant depth.

Considerable effort in the last two decades has been devoted

by others to exploring the limits and applicability of these

remarkable systems which not only admit exact, nonlinear, analytic

solutions, but also appear to be easily studied in laboratory wave

tanks. Starting with Peregrine's (1967) derivation of Boussinesq's

equations for mild bottom slope, many authors have conducted extensive

experimental and numerical studies of the development and eventual

fate of solitary and cnoidal waves over varying bottom topography (see

Miles's (1980) review). However, because of the rather restricted

initial or boundary conditions required for the exact solutions of

Boussinesq- or K-dr-type equations, it is not clear that detailed

studies of the behavior of these solutions will lead to a general

shoaling model for surface gravity waves.

Wave observations on open and partially sheltered coasts

confirm that the frequency and wavenumber spectra of sea-surface

elevation and horizontal velocity can vary appreciably on time scales

- .I * -- _ _ __ _ _ __
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of days, even when the area of interest ,s not in an active generation

region. Although occasionally incoming vve energy is concentrated in

a narrow band of frequencies and directiLns analogous to the basically

monochromatic systems discussed above, most of the time the spectrum

is broad or contains multiple peaks (not harmonics). Following the

suggestion of Phillips (1960) that energy could be transferred between

deep water gravity waves of different frequencies and directions,

Hasselmann (1962, 1963, 1966) developed a model for such nonlinear

resonant transfers in a general, continuous spectrum of deep water

gravity waves. Much additional work followed on this essentially

statistical problem (Benney and Saffman (1965), N'ewell (1968),

Willebrand (1975), Longuet-Higgins (1976), Hasselmann and Herterich

(1979)). Svch work has demonstrated that the quartet resonance

mechanism can indeed cause significant changes in the spectrum of the

wave field over distances of several hundred kilometers or more.

Importantly, although details of the evolution depend on the spectrum,

the models themselves do 'not require -) specific initial spectral

shape. A Iajor difficulty in the work has been the complication dve

to the presence of two asymptotic limiting procedures; one due to

perturbation expansions in small nonlinearity, and the other due to

the passage from discrete to continuous spectra.

Armstrong et. al. (1962) and Bretherton (1964) introduced the

idea of "near resonance" in weakly nonlinear systems with discrete

spectra. Near resonant systems exhibit behavior similar to resonant

systems on moderate scales, but appear more like forced systems on

* long scales. Mei and Unluata (1972) and Bryant (1973) demonstrated

A
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that Boussinesq-type shallow water equations for waves over a flat

bottom support neir resonance at second (quadratic) order. Because

the near resonance in the equations occurs at lower order than for

deep water gravity waves, significant energy transfers and phase

modifications can take place in several -,,ndred meters rather than

hundreds or thousands of kilometers.

In Chapter II of this work we develop two nonlinear models for

the evolution of the wave field in the shoaling region, based on

sloping bottom Boussinesq-type equations. The mechanism for the

shoaling transformation is seen to be triad near resonance across the

entire wind-wave frequency band. The models predict both cross-

spectral energy transfers and nonlinear phase changes. Chapter III

describes a field experiment in which detailcd measurements of wave

parameters were collected throughout the shoal ing region.

Measurements are compared with model predictios for a variety of wave

conditions in Chapter IV, and further discussion and conclusions

appear in Chapter V.

.1
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I. THEORY

In this section we derive equations for the evolution of

amplitudes and phases of inviscid, irrotational, wind-waves

propagating shoreward over slowly varying, impermeable topography.

These rate equations are a consequence of triad near resonance in the

governing, shallow water, Boussinesq-type master equations.

To Justify the use of shallow water equations, periodic

solutions are first found for the special case of linear waves over a

flat bottom of arbitrary depth. The dispersion relation obtained

indicates that for motions in the wind-wave frequency band defined

here as 0.05-0.25 Hz, wavelengths are large compared with the water

depth almost everywhere in the shoaling region. This motivates the

derivation of a simplified set of nonlinear equations of motion valid

only for such long waves. Small amplitude solutions of the

equations yield a dispersion relation which is at most only* m".,):y

dispersive. We show that such a system supports triad near resonance.

Thus amplitudes and phases of lowest order solutions are expected to

very slowly due to nonlinear wave-wave interactions. Two-scale

methods are used to solve the nonlinear, long wave equations; at

lowest order, the linear, flat-bottom dispersion relation is obtaine.

as vwell as a relation between sea-surface elevation and velocity

- potential. Carrying the solution to the next order yields equations

for the cn-offshore evolution of lowest order amplitudes arid phases.

7
__ __ I.
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The Equations of tlotion

ihe equations of motion and boundary conditions for the one-

dimensional, irrotational motion of an inviscid, incompressible fluid

over an impermeable bottom are well known:

v2 €. 0 -h(x)< z< n(x,t) (a)

0 =  h z = -h(x) (b)

nt + (nxx) - Oz = 0 z = n(x,t) (c)

gn + t + (2 + 02) = 0 z = n(x,t) (d)

w2 2

where V2  + -2, -h(x) is the bottom, n (x,t) is the free

surface, and 0 (x,t) is the velocity potential. (See figure (1) for a

definitional sketch.) It is possible to nondimensionalize, expand, and

scale the system (1) such that the nonlinear terms in the surface

boundary conditions C1.c, 1.d) differ from the other terms by the

factorc = (a X2 )/(4r 2 h3), where a is a typical sea-surface elevation
0 0 0 0

amplitude, Xo a horizontal scale of motion, and ho a depth. If e and

the bottom slope hx are small, then a solution of the lowest order

equations is

= a cos(kx-at) (a)

L cosh k(z+h) sin(kx-ot) (b) (2)
a cosh kh

q2.= gk tanh kh (c)

Evaluation of the dispersion relation (2.c) shows that in 10 m depth

(at the outer edge of the experinental shoaling region), even short

wind-waves of 4 second period have a wavelength greater than twice the

.1 ,:, .
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Figure I

Definitional sketch and coordinate system
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water depth. Although the Stokes expansion used to obtain the

solutions (2) is correct for deep and moderate depth water (where

SI'  wavelengths are not much larger than the depth), it is clear that the

requirement that the Ursell number (c ) remain small will preclude

its use in shallow water except for the smallest amplitude wind-waves.

This severe constraint on wave amplitudes can be relaxed if it

Is assumed apriori that the depth is shallow. The derivations of

equations for finite amplitude long waves were originally based on

physical arguments (Boussinesq (1871), Korteweg and de Vries (1895))

and later put on firmer formal ground by Friederichs (1948) and Keller

(1948). The more formal derivations begin by nondimensionalizing and

scaling the horizontal and vertical coordinates in (1) differently.

The dependent variables are then expanded in a power series in

(depth/wavelength)2 , resulting in two equations corresponding to the

boundary conditions (1.c) and (i.d), each with the two small

parameters (h2/A2) and (ao/ho). Boussinesq's equations are then

obtained by retaining terms up to first order in each of these

parameters, thus modeling the effects of both weak dispersion and weak

nonlinearity. These equations admit exact solutions corresponding to

waves of permanent form, the so-called cnoidal and solitary waves.

Generalizations of the Boussinesq and K-dV equations to include the

effects of sloping bottoms were obtained by Peregrine (1967), Mei and

LeMehaute (1966), Ostrovsky and Pelinovsky (1970), Grimshaw (1970),

and Johnson (1973). Svendsen and Hansen (1978) discuss the size (in

an ordered sense) of bottom slope for which the equations can be

expected to remain valid models of the physical system from which they

7I
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were derived. Although the solitary and cnoidal wave literature is

extensive, to our knowledge no analytic or numerical work has been

done pertaining to the transformation, on a sloping bottom, of

periodic waveforms of arbitrary spectral shape (within of course, the

bounds of long waves). We now give a brief derivation of the sloping

bottom Boussinesq equations, following Peregrine (1967) and Grimshaw

(1970).

The independent and dependent variables in (1) can be

nondimensionalized and scaled by

x'= Aox; z'= hoZ; t'= t; h-= hz; € = 0; n = ao n (3)

0

(where unprimed quantities are nondimensional), resulting in

0 xx + zz = 0 -h < Z < an ka)

Shx~x + fz = 0 z = -h (b)

aint+ Oanxsx - Oz =0 z = an (c) (4)

Bn + Int + Bc*2 + 2 0 Z = an (d)

0 is then expanded in the form

+ 0 + + 02 02 4 0(03) (5)

with the forms of 00 ,0 , and 02 obtained by substitution of the

expansion for 0 into (4.a) and (4.b), yielding

A,
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4o= *o(xt) (a)

#I Z2 %X " z(oxh)x (b) (6)

Z4 0 + 1 z3(so h)~~ +
#2 T4 ZOxxxx +  x z(xhxxx +

z hlOoxxx - 2 h2 (.oxh)xx)x  (c)

If the expansion (6) is then substituted into (4.c, 4.d), neglecting

terms of 0(0, 2,e2), then the system

+ 40t + h a(Ox)2 = O(aa, M2 . B2) (a)

Tt + (oxh) x + 1(nO) + I{( ho + (7)

1-( h2hxxOOx)x }I = 0(0
2 , C10. 02) (b)

is obtained (Grimshaw (1970)). These are the sloping bottom variant

of Boussinesq's equations for the surface velocity potential. By

repeated use of (5) and (6.a, 6.b), they can be transformed into

equations for any desired velocity potential variable. For instance,

the average velocity potential is defined by

I f h¢(x, z, t) dz (a)--h + an -h

leading to (8)

= *0 6 0%Oxxh 2 + h oh(Oxh)x + 0(02,00) (b)

(8.b) can then be inverted and substituted into (7); the resulting
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system (after considerable algebra)

+ Xt ho(jxth)xx +  h2¢'xxxt + (a)

d n n od t we 02, :2) ()n~t + (h-+X) x + (n~x x =0(,j, 2 b

is eouivalent to Peregrine's (1967) equations (13, 14). Returning to

dimensional coordinates, we obtain as our approximate equations of

motion for wind-waves in the shoaling region (dropping primes)

g + Cxt ( =  h(Txth)xx - h2x (a)

n + (hx)x + = (b)

As there are no explicit restrictions on their applicability,

a few comments are warranted. Firstly, equations (10) are good

A approximations to the full equations (1) only for the case of long

waves of moderate nonlinearity

O(hi/xi) = 0(ao/ho) << 1

In addition, even if these conditions on the parameters of the

solution are valid, the equations cannot be considered a valid model

for all values of the independent variables; terms of formal order

((h/ 0  ,kr (a/ho)2 , ) which were neglected in the equations may

have 0() effects on the solution over nondimensional times and

distances 0((h /Ao) . (a /h0 )2) This is analcgous to thedistan00
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discrepancies intuitively expected between solutions of inviscid,

conservative, equations and the behaviour of "real" (nonconservative),

isolated, physical systems. The conservative equations are generally

derived by an ordering process (explicit or implicit) equivalent to

that shown above, with the viscous terns deemed to be of higher order.
Solutions of the conservative system will be apparently valid for all

values of the independent variables. In fact, we expect that the real

effect of the neglected viscosity will be to cause the isolated system

to lose energy to its surroundings, and thus eventually to "run down."

The details of the energy loss processes and their effects on the

system can never be inferred from solutions of the conservative

equations.

Additionally, one can view the neglected terms as adding

errors of their order into any local solution. On ordering grounds,

even exact solutions of the approximate equations cannot be expected

to be exact solutions of the full equations of motion obeyed by a real

system. It is thus wholly consistent with the derivation of

approximate equations to pursue approximate solutions (which have a

more obviously limited validity) in an attempt to model specific

phenomena. This is true even when, as in the present case, exact

solutions of the approximate equations can be obtained for a limited

class of initial or boundary conditions.

11 .',~.- . .~' -
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A Consistent Shoaling Model

The equations (10) can be recast as a set of approximate

equations describing the spatial evolution of the Fourier modes of the

wave field. The resulting equations are valid for a wave field that

is everywhere periodic in time in a region of length L (large compared

with a wavelength, but not larger than the apriori limits on the

validity of (10) discussed above). In the following, the implicit

assumption o-" 8 used in the derivations of (9) and (10) is made

explicit upon renondimensionalizing by the substitution 0 = Pa
3 2a . Ml

P =0(1) is the inverse of the Ursell number, P =h0 k o 2 Ia) Mild

and slowly varying bottom slope is made explicit by the assumption

h=h( ax); then - =O(c n ). The equations in nondimensional form
axn

then become

nx + Oxt Pah2xxxt + 2 ) =0

"t + (T-h)x + a(-)x =0 (b) (11)

on 0 S x -L, L I0(G' 2 ), <<l (c)

Before embarking on the protracted algebra required for a

perturbation-type solution of (11), it is Instructive to investigate

the linearized form of (11) obtained by allowing a =O:

C+ n = 0 (a)
(a) (12)

r t + hxx = 0 (b)

This set is just the linear shallow water equations for a flat bottom

JJ
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(Stoker (1957)). Periodic solutions of (12) of the form

n a cos(kx-ot+A) (a)

(13)

= sin(kx-at+A) (b)

yield the relations

Q = a/a (a) (14)

k = a/h (b)

The linear dependence of k on a in the dispersion relation (14.b)

indicates the well known fact that linear, shallow water waves are

nondispersive, with all frequencies propagating at a uniform phase

speed that depends only on the (nondimensional) depth. This has

important consequences on higher order (in a) solutions of (11). At

next order, the nonlinear terms in (11) appear, and there arises the

possiblity of either nonlinearly generated forced waves or resonant

triads. Which manifestation of the nonlinearity actually occurs

depends on the form of the lowest order dispersion relation.

Second order, forced waves are due to nonlinear interactions

among lowest order, free waves, resulting in time and space

periodicities that are incoimensurate with the lowest order dispersion

relation. Forced wave amplitudes are constrained to be always small,

of O( Cs1 .

If, however, nonlinear interactions between lowest order free

modes result in motions that satisfy the dispersion relations,

nonlinear resonance occurs. The requirement that nonlinear
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interactions between lowest order modes result in resonant forcing is

expressed by the "resonance conditions"

±01 ± 2- 03 = 0 (a)

(15)
+ 2 - r3 = o (b)

where each (an, kn) satisfies the lowest order dispersion relation.

Clearly, if motion is unidirectional and the dispersion relation

relating IkI and a is linear, (15.a) and (15.b) are not independent

constraints. Under these conditions, if one of (15.a) or (15.b) is

satisfied, then the other must be satisfied as well. Thus triad

interactions governed by equations (11) must be resonant. The

literature on resonances in general is extensive (for a review of

physically interesting triad resonances, see Kaup et. al, (1979 a,b);

Hasselmann (1966) enumerates geophysical resonances; while Phillips

(1974) reviews resonances in waves in fluids.) The salient features

of the interactions are:

1) 0(1) energy can be slowly (on length

scales large compared with wavelengths)

transferred between interacting modes;

2) Similarly and simultaneously, slow

phase shifts (equivalent to small

changes in the phase speeds) can

occur among the interacting modes.

The scales on which significant nonlinear energy or phase changes can

-Ioccur is approximately ( " ), where a is the (small) measure of the

size of the nonlinear terms (Bretherton (1964), Phillips (1977)).

4
Ikl , , ,,,/:: , . ...
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Bretherton (1964) and Armstrong et. al. (1962) used methods similar to

the two-scale technique of Krylov and Bogoliubov (see Minorsky (1974)

or .Cole (1968)) to obtain asymptotic solutions describing resonant

interactions. In the following, similar techniques will be employed

to derive approximate solutions of (11).

We expand the dependent variables f , i in a power series in

= 1 + W2 + (a)

n T1n + an2 + (b)

The solution will be caried only as far as the first term in each

expansion. Anticipating resonant interactions, we will allow

parameters of the solutions 1 n , to vary slowly with x.

Specifically, assume solutions of the form

- Q On(x) sin(Tn(x)-Ont) (a)
(17)

nj an(x) cos(Yn (X)-Ont) (b)

where an =nAo and On, an are functions of the slow space variable &=ax

(similar to h=h(ax)) such that

dn  a n  dn  an )dxn [ Qn d& = n-  Qn ]+oa+)(8

The spatial phase function IF ix) has both 0(1) derivativesn

(corresponding to the basic wave motion itself) and higher order

derivatives (slow phase changes due both to the sloping bottom and to

V6_
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the anticipated effect of resonant interactions):

dL__ v(x) k n() + QTn(¢) + O(2) (a)

(19)

d2 'd X) = E k( ) + 0(a 2 ) (b)

When (17)-(19) are substituted into (11), the lowest order relations

(14) are obtained. Higher order solutions are more compactly pursued

if (11.a, 11.b) are cross-differentiated and subtracted to eliminate

linear terms containing n

xtt - h -xx P h2Txxxtt + ) a(Tix)xt (20)

2 Ah t-Ix x - a(nix)xx = 0

Substitution of (17)-(19) into (20) yields at 0( a)

E (Qn1 (3hk 2 _ 02) + Qk(3hk + 2hc )1 sin 0,) +

SQn~Tn(3hk 2 - d2) - - ph2Q k3a2) cos % +

n n n 3 n n n
(21)

f l jQmkm(kj+km){ kj(crj+o) + a.(k.+k )} cos(Oj+e m) +

1 -E Q.Q k (k.-k N{ kj(oj-om) + oj(kj-km)) cos(oj-0m)
jm M j Mi

where 0. = ('q- qt) and E is the linear operator

If all waves are unidirectional, then (14.b) can be used to eliminate

6 -. t
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k. The technique of Krylov and Bogoliubov, essentially a solubility

constraint, requires that 02 not contain time periodicities common to

€1. Since the sums in (21) are taken over all (positive) frequencies,

02 can thus be set identically equal to zero. Then, applying the

resonance condition (15.a) and making use of the fact that all

frequencies are harmonics of a small' frequency AG

{2Qnc 2 + ( a2+Q 02 )sin% +rQa22T - - ° nC°Sn
nt n n)}snn n n n3 n

3
3- (h)"2 Er. (Q2 i O.Eja 2 QjA(n-j) Gjo(n-j) n sin( e(n-j) (22)3 2

(h)-  ZZQ 2 sin(o n4 in {j(i-n) 0j 0 (j-n) n .f (j-n)

Expanding the arguments O._ O(.) , adding and subtracting ' , and

equating like frequencies, two evolution equations for each mode are

obtained:

ht 3

n; =  (3 n -)n-j), 3h)2  I sin( +-n h j 'uja(n-j) s j+f(n-j)'Tn)

3 (a)
'Z Q 8(h)' oI~ )Sin(Tj-T)

J Q%(j-n) { ("n) 2n)-Tn

(23)

Q j(n-j) 3
6 R 3 (6(h) )oTn 6 n Qn ojf(n-j) }cOs(Y+' ( n- j ) - n  -

Q 3 (b)
jQ(j-n) 3  -'TQjqjn ( (h)- °a (j-n)})C°S('T 4(j-n)-%Yn )  b

Qn
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The problem is thus reduced to solving the system (23) of coupled,

first order, ordinary differential equations for modal amplitudes and

phases.

If it is assumed that all energy in the shoaling region is

propagating shoreward (thus specifically neglecting reflection in the

shoaling region), knowledge of the Fourier coefficients of sea-surface

elevation and velocity potential at a single on-offshore location

provides a sufficient boundary condition for solution of the evolution

equations. Boundary conditions of the form

-O~t) - Q- cos(An+ at) (a)

(24)

ni(O,t) = a- coS(An+ oat) 
(b)

n = nAn
0n M

are used to set the integration constants Qn(O), Fn(O). The solution

01- 0(a2) is a first order solution uniformly valid over the

horizontal extent 0 < x <_L, L c 0 )2  . For larger values of x,

the cumulative effects of the neglected derivative terms - [ Tj
dxn  '

n _2, are expected to invalidate the solution. Furthermore, terms of

i* this formal order have been omitted from the basic equations (9, 10)

so that higher order solutions are pointless unless higher order

versions of (9, 10) are properly derived.

Some physical meaning can be given each of the terms on the

RHS of (23.a,b). The first term of (23.a) has the form of "linear

shoaling," that is, the result due to a WKB solution of the linear

equations (12) on a mildly sloping bottom. It is present due to the

* I ,,- T - , T
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assumption that bottom slope is O(W). If bottom slope was deemed of

higher order, the term would not appear in these equations, but it

would appear in exactly the same form in a higher order solution.

The first term of (23.b) models the effect of O( e )

dispersion. The term represents an increase in phase speed that is

dependent weakly on depth and strongly on frequency, and is precisely

the first correction to an expansion of the linear, finite-depth

dispersion relation (2.c) for small kh.

The remaining terms in (23.a, *b) are due to nonlinear,

resonant triad interactions. Since they are a sum over all possible

interactions in which a given mode can participate, they represent the

net rate of change of modal amplitude and phase. Viewed

heuristically, a mode can be simultaneously participating in one triad

in which it is gaining energy and in another in which it is losing

energy. The ordering criterion of slow modal amplitude and phase

changes must be satisfied for both the net changes and each individual

triad interaction. Each of the interaction terms is composed of a

quadratic product of amplitudes, a coupling coefficient, and a

trigonometric term whose argument is a function of spatial phases

only. In the case of phases (23.b), the terms are further divided by

the amplitude of the mode of interest. Phases thus have "amplitude

inertia" in that small amplitude modes will tend to experience larger

phase shifts due to nonlinear interactions than will larger amplitude

modes (all else remaining equal). Note that if the dimensionless

amplitude of any mode starts and remains small (0( )) for many

interaction lengths, the formal ordering scheme is technically
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violated. Such a situation occurs for initial conditions described by

narrow-banded power spectra. In such cases, models similar to (23)

predict only small, nonlinearly-induced changes in the amplitudes and

phases of modes whose frequencies are not near harmonics of tie

spectral peak. Although inclusion of such modes in O( x ) rate

equations such as (23) is not justified, comparisons between measured

data and the formally inconsistent predictions of (23) are seen to be

remarkably good (cf. section 5.2.2).

The coupling coefficients do. not depend on either the

amplitudes or phases of the interacting waves, but are functions (in

general) of their frequencies, wave numbers, and the local depth. For

a given resonant triad, the value of the coupling coefficient

increases with decreasing depth.

The trigonometric term modulates the amplitude and phase

changes according to the relative spatial phases of the three waves in

a given triad. At a position x=D', the relative phase can be written

D'

S± T -nj - Tn -5-' +(nj V Y ) dx' +

4 1 (0 ) ± Ti (nj) (0) -± ()O)

Using the definition (19.a) and the dispersion relation,

(n-j) (Tj +±(n-j) Tn)dx

(25)
Y (v1(O) t v_±(n-j)( 0 ) - n(O))

The importance of nonlinear phase changes over large distances is

manifest in the integral on the RHS of (25 ). Although the integrand

is formally C( i ), If D' is O(a-1), the integral contributes an 0(l)
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amount to the relative phase. This affects both the magnitude and

sign of the amplitude and phase changes undergone by the interacting

waves. Effects of the linear dispersion term in (23.b) are also

expressed through the trigonometric modulation terms. Dispersion

causes the phases of higher frequency modes to change more quickly in

x than those of low frequency modes (independent of nonlinear

interactions). The relative phase of a triad containing high

frequency modes will thus oscillate more rapidly than one containing

only low frequency modes. Consequently, the value and sign of the

trigonometric term will change more quickly, and net (over a distance

D'< L) energy transfers and phase modulations will be smaller.

An Alternate Shoal ing Model

The dimensional equations (10) can also be nondimensionalized

and scaled by:

x'=hoX; t,= ho t; n'=aon; 0'=a V/go 0; h-=hoh (26)

yielding:

x~t+ () x chh J ,x 3 .h2 t =0 (a)

(27)
=0 (b))nt + chj+ + h+ x + clnjx) x --0 (b)

where c = a0/h0 << I and bottom slope is 0(c). This set of equations,

used by Mel and Unluata (1972) (the nondimensionalization and scaling

was apparently used implicitly by Peregrine (1972) in deriving his
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"linearized Boussinesq equations") has only the nonlinear terms

explicitly small; the dispersive term h2  frl

0(1). The equations for c = 0 yield the counterpart of (14),

Q aa (a)

(28)

k c (1-- 2) (b) '
The wave number k is no longer a linear function of c . However, if

1 h a2 << 1, (28.b) can be expanded and truncated to3

k = h- (1 + ha2 + O(h2ao) )

and the leading term is just shallow water dispersion. In terms of

dimensional coordinates, the restriction of

I ha2 << I3

is not very severe for the physical shoaling problem. ha2 --0.3
3

corresponds to wave period about 6 seconds in 10 m depth, 4 seconds in

5 m depth, and a value of (depth/wavelength)2 ( B of the previous

* discussions) of about 0.04. Thus although the system (27) formally

has lowest order dispersion, for the wavelengths and frequencies

encountered in the physical shoaling problem, the dispersion is mild.

In the following, we will ignore the formal ordering problems

associated with the fact that, with the present scaling, realistic

values of a and k will be small and will use the full dispersion

relation (28.b). Similar selective failure to neglect formally high

order terms is not uncommon in the literature (eg. Grimshaw (1970) and

Bryant (1973)), and occasionally has led to erroneous conclusions (cf.

* 46j
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Johnson's (1973) comments regarding Grimshaw (1970)). In Chapters IV

Iand V we will present experimental evidence that suggests that the

major differences between a shoaling model (30) (derived from

equations (27)), and the model (23) (derived from (9)), are

attributable to differences in linear dispersion relations. WKB,

finite-depth, linear theory will be seen to yield the best predictions

of power spectra and average phase in the "linear" regions of physical

and frequency space where differences between the two nonlinear models

are most apparent. As the linear dispersion relation (28.b) is a

better model of the finite-depth relation (2.c) than is (14.b),

equations (27) will in fact be seen to provide a slightly better model

for predictions of power spectra of sea-surface elevation than the

more consistent equations (9).

Bretherton (1964) showed that a system such as (27), with only

mild dispersion, can be treated analytically by the methods described

earlier for exactly resonant systems. Monotonic dispersion prohibits

(in general) any triad from satisfying both resonance conditions (15)

exactly. Nowever, if the dispersion is mild, (15) can be satisfied

with only small error by some triads. The conditions for this "near

resonance" are:

± a1 ± 02 = U3 + 60 (a)

r+ k2t +  = t 3 + 'k (b) (29)

I6~I 1(1 = 0(0) Wc

The formalism of (16)-(23) can be easily carried through (in the

present case, 6 =0); the resulting evolution equations are:

GA,
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Q k2 h (3an - 1)
Qnt n n 2 + Q Q(n-j) c+(j,n) sinf +4f(n.j)-"d+2 j 

(a)

j JQ(j-n) (i,n) sin('j -~ yn )

(30)

Tn= QQ +(,n) cos(T +T( 'f)
J 4Q n  (n-j)n

(b)

Q n -(j,n) cos(T j-y(jn)-Y4n)I4Q n

k.
where {+(j,n) k k+(n)( ±(nk) h - (k -+ n) + a}

(Equation (30) can be simplified and the coupling coefficients made

synmetric by omitting terms of 0( 6k =  ).) The physical explanation

of most terms is the same as for equations (23). However, (30.b)

lacks a linear phase shift. The effect is modeled, in this case, by

the 0(1) dispersion through the dispersion relation relating k to

. The relative phase terms now have argument

DI

j ± V±(n-j) - 4fn = f (k. ± k±(n) - kn)dx +
0 n

D'

f 0(T + T ±(n-j) - Tn)dX +(T (0) ± y±(n-j)(O) -n(O))0 n

By (29.b) above, (k.-±k +.j-k n)=O( c); on a flat or mildly sloping

bottom where the wave numbers are only slowly varying functions of x,

:!I.
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the effect of the mismatch in the resonance condition is to introduce

slow changes in the relative phase of the triad similar to the linear

phase shift term in (23.b). The larger the mismatch, the more rapid

the phase oscillations. Since the deviation from linearity of the

dispersion relation (and hence the mismatch) is more pronounced at

high frequency, the net energy transfers and phase changes are small

for triads containing high frequency waves. It is thus reasonable to

suppose that a high frequency cutoff in the sums (17) is possible; as

long as it is sufficiently high, the exact cutoff frequency is not

critical (Bretherton (1964)). Of course, as depth decreases, the

waves become more nondispersive in character. In the limit of

extremely small depth, all high frequency modes have vanishing

mismatch, and the cutoff frequency must be extremely high (c.f. Nayfeh

(1981)). In this case, however, both the governing equations (10) and

the perturbation-solution techniques are inappropriate and should be

replaced by the nonlinear shallow water equations (Stoker (1957)) and

one of the many techniques for obtaining approximate solutions of

hyperbolic equations (Whitham (1974), Nayfeh (1981)).

Neither system (23) nor (30) have knowr analytic solutions.

If the depth is constant and only a single resonant triad is

considered, Armstrong et. al. (1962) and Bretherton (1964) show that a

solution exists in which modal amplitude and phase variations are

described by Jacobi elliptic functions. These solutions are

applicable to a broad spectrum of modes only in the case where c

becomes so small that any given mode participates in at most a single

(near) resonant triad (Bretherton (1964)). This is clearly not the

JMAN



30

case for shoaling surface gravity waves. The evolution equations must

thus be integrated numerically.

In the present study we have implemented a numerical

integration scheme known as "repeated extrapolation to the limit" due

to Gragg (1963) and Bulirsch and Stoer (1966) (see Stoer (1972) for a

reviewv of extrapolation methods and improvements on the algoritm

published in Bulirsch and Stoer (1966)). The algorithm is both

efficient and highly accurate and is easily modified to accommodate

large numbers of coupled equations. We have performed considerable

testing to verify the accuracy of the numerical scheme. Four coupled

equations (corresponding to the amplitudes and phases of a fundamental

and its second harmonic) were integrated over a flat bottom for more

than a kilometer (in dimensional coordinates) for both equations (30)

and (23). The results were compared with the analytic solution

expressed in terms of Jacobi elliptic functions (Armstrong et. al.

(1962)). Modal amplitudes differed from the exact solution by less

than 0.5% everywhere, and phases by less than 0.1 radian, over a

variety of initial amplitudes and phases. In addition, internal

consistency checks were carried out for integrations of up to 30

modes. The automatic step size feature of the algorithm was disabled,

and integrations were performed with a range of basic step sizes. All

results compared well (less than 1% maximum difference) for step sizes

over a range of a factor of 5.

"IP



III. EXPERIMENT

A field experiment to measure the wave parameters of sea-

surface elevation, pressure, and horizontal velocity was undertaken at

Torrey Pines Beach, Ca., during the summer and fall of 1980. The

primary goal of the field work was to determine the operational

validity of the one-dimensional shoaling models developed in the

previous section. However, the dearth of existing quantitative wave

measurements in the shoaling region motivated an extension of purpose.

A secondary goal was to provide a comprehensive, quantitative

description of wave-induced fluid motions throughout the shoaling

region, with the hope that the data would be useful for validating

future theories. To this end, the on-offshore measurements were

extended beyond the defined shoaling region (10 m depth to 3 m depth),

and two longshore arrays of instruments at different depths were

established to allow measurement of wave frequency-directional

spectra.

This chapter describes the experimental site and types of

instruments used, experiment design and sensor placement, data

acquisition and reduction, and concludes with a brief overview of the

data set as a whole.

Site and Instrumentation

Torrey Pines Beach, Ca. has been the site of numerous

nearshore field experiments (Pawka et. al. (1976), Aubrey (1978),

Gable (1979), Inman et.al. (1980)). Located approximately 3 km north

31
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of Scripps Pier, it is readily accessible both by small boat and four-

wheel-drive vehicle. The bathymetry is relatively homogeneous in the

longshore direction, with contours running approximately 6.50 west of

true north-south. The beach is composed of fine, quartz sand (mean

diameter 0.17 m) and has a fairly constant slope of about 2% through

the instrumented region. An extensive study of the wave climate at

the site was reported by Pawka et. al. (1976).

In all, 28 channels of wave data were obtained from three

types of instruments: 10 pressure sensors, 5 dual-axis,

electromagnetic, current meters, and 8 surface-piercing wavestaffs.

The pressure sensors used were of the strain guage type, predominantly

Statham model PA 506-33 (a limited number of Transducer Inc. #5AP-69F-

50 were also used). The pressure sensors are extremely durable and

easy to install and maintain when mounted in the standard

configuration, approximately 25 on above the bottom. Previous

experience has shown them to be highly linear and drift free over long

periods of time and varying ocean conditions. All instruments were

pre- and post-calibrated with agreement to better than 3%. Raw

pressure signals were amplified prior to being digitized, resulting in

least count error of 0.003 m.

The linearized form of Bernoulli's equation can be used to

relate pressure signals directly to sea-surface elevation or

horizontal speed when finite amplitude effects are locally small.

Pawka (1976) and Guza and Thornton (1980) present comparisons between

estimations of wave parameters derived from co-located pressure

sensors, wavestaffs, and current meters throughout the shoaling region

A I.
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and surf zone. In most cases reported, agreement between pressure-

derived estimates of sea-surface elevation and direct measurements was

well within 10% in amplitude across the entire wind-wave frequency

band. The agreement is virtually independent of spectral shape, total

energy, and on-offshore position, with the exception of the region

near the break zone. In place of the linear, finite-depth

transformations, the relations obtained from the linear Boussinesq

equations can also be used with comparable results everywhere except

at high frequencies ( > 0.17 Hz) in deep water ( > 9 m). The

discrepancy is due to breakdown of the long wave assumption inherent

in the derivation of the Boussinesq equations. The linear, finite-

depth theory was therefore used to transform between bottom pressure

and sea-surface elevation.

The current meters were Marsh-McBirney #512 dual-axis,

electromagnetic, current meters. The instruments measure two

orthogonal components of velocity. In this experiment, the sensing

elements were placed approximately one meter above the bottom, and

horizontal velocity (longshore, on-offshore) was measured. Although

rugged and durable, there is considerable uncertainty about the

dynamic response of the instruments to a broad-banded wave field

(Lavelle (1978), Cunningham et. al. (1979)). Additional uncertainty

in orientation (about 50 in all directions) further degrades the

current meter data. The performance of the E-M current meters was a

disappointment throughout the course of the experiment. Apparent gain

reductions of up to 30% w-e observed to occur over immersion periods

of about a month. The changes became apparent only when new, dry,

.... .- m
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meters were substituted for ones that had been underwater for some

time. Because of the questionable gain, it was initially decided to

ignore all curent meter data for comparison with the shoaling models

presented here. Since various types of instruments were intermingled

on the on-offshore line, the loss of all current meter data was not

catastrophic. It did, however, seriously affect the high-frequency

aliasing characteristics of the directional arrays, as the current

meters were the basis for the shortest on-offshore lag in each array.

The wavestaffs used were similar to those described in Flick

et. al. (1979), consisting of twin resistance wires supported

vertically by a 5 m long fiberglass pole. They are useful for direct

measurements of sea- surface elevation in depths shallower than about

6 m. As with pressure sensors, considerable field testing has shown

these instruments to be linear and stable, with excellent frequency

response up to 10 Hz. Although post-calibrations were not possible

due to breakage of the sensing wires in the storm of 1-2 October, each

instrument had been calibrated periodically for more than a month

prior to being installed, with differences at the 1% level for gain

and offset. In addition, wavestaffs and pressure sensors were "in

situ" calibrated by comparing predicted and observed tides and

intercomparing mean depths between sensors over time. Least count

error for the wavestaffs was less than 0.002 m. The largest source of

error in the measurements was due to the staff being mounted at an

angle to true vnrtical. Visual and photographic observations showed

that the staffs were well within 200 of vertical, resulting in

elevation errors less than 6%.

.4
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Experiment design and sensor placement

Quantitative comparison of the one-dimensional shoaling

models' predictions with data required instrumentation of an on-

offshore transect through the shoaling region, approximately 300 m in

horizontal extent. Based on the results of Guza and Thornton (1980),

spatial coverage was maximized by placing only a single instrument at

each on-offshore location; the linear, finite-depth relations were

used to locally transform from the measured variable to the wave

variable of interest on a frequency band-by-band basis.

Previous data obtained on the same beach in November, 1978, as

well as casual observation, indicated that the evolution of the

frequency spectrum became more pronounced in shallow water than in the

deeper regions of the shoaling region. This is entirely consistent

with the form of the evolution equations (23) and (30), in which wave

amplitudes, coupling coefficients, and closeness to resonance, all

increase with decreasing depth. Trial comparison, of spectral

evolution between numerical integrations of the evolution equations

and November, 1978 field data indicated qualitative agreement.

Additional model testing with idealized, synthetic, input conditions

confirmed the trend toward increased spectral shape evolution with

decreasing depth. Thus, rather than sampling evenly along the on-

offshore transect, the density of instruments was greater in shallow

water, primarily at the expense of mid-depth (8-6 m) regions. As seen

in the plan view figure (2), a mix of 4 pressure sensors, 5 current

meters, and 3 wavestaffs constituted the main on-offshore

instrumentation. Wavestaffs were used in shallow water in place of
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Figure 2

Plan view of the instrument locations in the 1980

shoaling waves field experiment. Approximate depths are

given near the right side of the figure.
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pressure sensors, in part to avoid complications arising from

previously observed discrepancies near the break zone between direct

measurements of sea-surface elevation and estimates inferred from

pressure data; however, under most wave conditions the instrumentation

did not extend to the break zone.

An additional pressure sensor (P1) was placed approximately

240 m seaward of P6 in a depth of 14.5 m. PI was placed 4.3 m above

the bottom, considerably higher in the water column than other

sensors, in order to maximize the frequency range of acceptable signal

to noise. If evolution of the wave field was truly dominated by near

resonant triad interactions as hypothesized, such interactions were

expected to be very weak over large portions of the wind-wave

frequency band in water deeper than 10 m. At these relatively large

depths, quantitative predictions of the Boussinesq models were

expected to diverge from actual data, in consequence of the breakdown

of the long wave assumptions crucial to th' derivation of the models.

Qualitatively, however, the increased inability of the wave field to

satisfy the triad resonance conditions was expected to hinder net

nonlinear transfers via the triad mechanism. As discussed in Chapter

I, nonlinear energy exchanges should then occur on the much larger

length scales appropriate to the quartet mechanism of Phillips (1960)

and Hasselmann (1962). The primary function of the deep sensor P1 was

to verify this qualitative reasoning.

The field experiment was designed to measure wave directional

spectra quantitatively at two depths in the shoaling region. A well-

surveyed, 5 sensor linear array of pressure sensors comprising

.4
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instruments P2, P3, P5, P6, and P7 (see figure (2)) had been

established at the Torrey Pines site in March, 1977. Design criteria

and analysis techniques for this array are discussed in detail by

Pawka (1981). The array had a total longshore extent of 400 m. The

original five sensor array had minimum lag spacing of 33 m,

corresponding to an aliasing frequency of 0.16 Hz in 10 m depth

(Pawka, 1981). Addition of another sensor (P4) for the present

experiment reduced the minimum lag to 17.8 m and the aliasing

frequency to 0.20 Hz. This is approximately the high frequency limit

imposed by depth extinction of the presure signa itself. Addition

of P4 also allowed use of the four sensor subarray P2-P3-P4-PS, with

optimal spacing 1-3-2 (Barber (1961)), in the event that sensor

locations P6 and P7 could not be supported; however, the anticipated

problems did not materialize, and use of the shortened array was not

necessary.

All linear wave-gauge arrays suffer from 1800 directional

ambiguity with respect to the line connecting the sensors. The

historical justification for the use of linear longshore arrays in

coastal regions has been the assumption, which was avoided here, of no

seaward-propagating energy in the wind-wave frequency band. In the

plan view figure (2), all sensors enclosed within a set of dashed

lines were designed to be analyzed as a single, two-dimensional,

directional array. Such an array theoretically allows unambiguous

resolution between seaward- and shoreward-propagating energy in a

given frequency band. Some results of directional analysis will be

discussed in Chapter V; model testing using realistic, synthetic,



40

directional spectra and the Maximum Likelihood Estimator was used to

aid in array design.

A second directional array was designed to operate in a mean

depth of approximately 4 m. The heart of this instrument group was a

1-3-2 longshore array of wavestaffs, with basic lag of 10 M. The

array thus had aliasing characteristics similar to those of the deep

array. Provision was made for two additional sensors in the

longshore, and model testing with realistic spectra led to the final

longshore array design 8-1-3-2-5, with total length 190 m. Three

additional on-offshore sensors (WI, C3, C4) could be included in the

analysis to provide full, two-dimentional estimates of the directional

spectrum, as with the deep array.

With the exception of a few previously established sensor

sites, all sensor locations were initially established using a mini-

ranger radar locating system operated from a small boat. Positions

were later verified by numerous mini-ranger surveys and direct

measurements between instruments. In addition, all wavestaff

locations were further refined by shooting redundant sets of angles

between the staffs and known benchmarks on the beach. The position

and approximate uncertainty for each sensor is given in table (M).
*1

Data Acquisition and Reduction

* )For data acquisition purposes, the sensors were divided into

two groups, based on their on-offshore positions. All sensors seaward

of P11 inclusive (see figure (2)) received their power from, and

returned signals to, a tethered spar as described by Lowe et. al.
,

L
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Table I

Positions and approximate uncertainties for sensors in

the shoaling waves field experiment. Positions are given

in meters relative to a left-handed coordinate system

centered on an arbitrary benchmark on the beach, with the

positive Y axis aligned with true North (thus

approximately longshore). Uncertainties are given in

meters, and apply to both X and Y coordinates.

"1
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TABLE I

NAME X y UNCERT

P1 794.6 475.6 4.0

P2 527.5 270.0 0.5

P3 531.6 300.9 0.5

P4 536.4 351.5 0.5

P5 538.1 369.2 0.5

P6 553.4 501.5 0.5

P7 573.4 665.2 0.5

P8 507.0 506.2 1.5

PIO 389.0 518.3 2.0

P11 478.9 509.0 1.5

Cl 567.4 500.1 1.0

C2 425.0 514.1 2.0

C3 337.6 523.9 1.0

C4 301.8 529.8 0.5
Cs 227.7 516.0 2.0
Wi 359.9 520.9 0.3

W2 296.9 439.0 0.3

W3 307.7 516.5 0.3

W4 308.5 527.7 0.3

W5 310.3 557.3 0.3

W6 313.8 575.3 0.3

W7 320.8 629.2 0.3

W8 287.3 528.2 0.3

" "1"I 1
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(1972) and Gable (1980). An electronics package inside the spar

scanned each data channel at 64 Hz. On each scan, all analog data was

digitized, encoded using pulse code modulation, multiplexed, and

transmitted over a VHF radio link to the Shore Processes Lab, where

the telemetered data stream was recorded on magnetic tape.

A similar scheme was used for data from all sensors shoreward

of P11. An underwater electronics package located near location W4

distributed power and performed signal conditioning. Digitized,

encoded, multiplexed data was returned to a beach installation via a

single cable. The data stream was then transmitted over a separate

VHF telemetry link to SPL, where it was recorded on magnetic tape

simultaneously with the deep station's data. In a separate, non-real-

time operation, data from the raw telemetry tape was decoded,

demultiplexed, block averaged to a sampling rate of 2 Hz, and placed

onto computer compatible magnetic tape. Further preliminary

processing removed "glitches" (caused, for example, by temporary

telemetry signal losses) and applied a low-pass, digital filter, with

cutoff frequency 0.9 Hz.

Experiment Overview

Useful data was collected sporadically from 14 June 1980 to 1

October 1980. All pressure sensors and wavestaff WI were operational

throughout this period. At most times after 20 June, wavestaff W4

functioned, and W8 (either as a wavestaff or a co-located pressure

sensor) came on line after 14 July. Due to difficulties involving

wavestaff maintenance and sand accretion, the longshore array of

]:" I .. . 2 ' -Ut,, )'.:'- ,
.,
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wavestaffs did not return data reliably until 3 September. However,

from this time until 1 October, all pressure sensors and wavestaffs

(with the exception of P1O on 4 September) returned high quality data.

The data presented and analyzed in the following chapters was

taken over a two week period in early September, 1980. During this

time, all pressure sensors and wavestaffs were operational.

Continuous data was obtained for between 10,000 seconds and 26,000

seconds on 11 occasions. Tidal variations during data runs ranged

between 20 cn and 100 an (runs were taken across all stages of the

tide cycle). Average variance of sea-surface elevation in the wind-

wave frequency band (as measured in 10 m depth) was approximately 90

an2 in early September, grew to 510 cm2 on 11 September as wave energy

from a storm in the southern hemisphere arrived, and then gradually

decreased to 175 an2  by 16 September. Spectral shape varied

considerably over the two weeks of interest. An intensive bathymetric

survey was conducted on 9 September, and measurements of instrument

heights off the bottom indicated that the bathymetry of the shoaling

region remained relatively constant throughout the two weeks of

interest.

* ri-.



IV. DATA COMPARISON

In this chapter we present comparisons between data obtained

in the field experiment, predictions of the nonlinear shoaling models

(30) and (23), and predictions of linear, finite-depth theory (LFDT).

Before presenting the comparisons, however, the relationship between

deterministic models and (possibly) stochastic data is explored

briefly. By examining some numerical examples, it is found that time

series analysis techniques applicable to stochastic processes yield

accurate results when applied to deterministic time series composed of

many discrete modes. We further demonstrate that nonlinear model

predictions of Fourier coefficients (or time series) are relatively

insensitive to the number of modes used to describe the wave field.

Finally, by treating the outputs of deterministic models as

realizations of a stochastic process, comparisons are made between

theories and data for power spectra of sea-surface elevation through

the shoaling region. Correlations between model predictions and data

are analyzed in the frequency domain by considering coherence and

phase spectra of sea-surface elevation. Both of the nonlinear models

(30) and (23) accurately predict significant, observed, nonlinear

evolution of the power spectrum of sea-surface elevation, while LFDT

i obviously does not. Coherences and phases between all three models

and data are favorable in those regions of frequency space containing

large amounts of energy. However, coherences and phases between LFDT

and data indicate poor correlation in those regions (both in frequency

and on-offshore position) where nonlinear spectral evolution is

observed to take place, in contrast with the models (30) and (23),

45
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which continue to have moderately high coherence and near-zero phase

di fference.

A fundamental problem, both conceptual and operational,

involves defining the basic deterministic or stochastic nature of the

wave field itself. The models (30) and (23) described in Chapter II

are deterministic - they assume that the wave field is composed of a

finite number of discrete modes, each having a definite amplitude and

phase. On the other hand, the ocean wave field has in recent years

been considered a stochastic process. Such processes cannot be

characterized by fixed frequencies with definite amplitudes and

phases, but must instead be described in a statistical sense. Rather

than attempting to give exact values for physically measurable

quantities, a statistical description appropriate to a stochastic

process attempts to define the probability that the measurable

quantities will fall within some range of values. If a deterministic

model is perfect (it exactly predicts all physically measurable

quantities), it can also be used to answer any statistical questions

to any desired precision. Since stochastic models only describe the

statistics of quantities, they cannot yield information on the actual

values of the quantities themselves. It thus seems desirable to model

physical processes deterministically rather than stochastically

whenever possible.

It is impossible, given finite data, to determine beyond doubt

that a given process is either deterministic or stochastic. As a well

known example (see, for instance, Feigenbaum (1980)), a random number

generator on a digital computer is clearly a deterministic process
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whose outputs can be predicted exactly if the algorithm and seed are

known. Yet, if such information is absent or imprecisely known, a

finite-length output series (shorter than the repeating block) can

pass all tests for "stochasticity"; the output series can, with high

probability, be considered a realization of a truly random process

with certain statistical properties only. Similar behavior has been

found for the outputs of deterministic models of physical systems

(Lorenz (1963), Ford (1975), Feigenbaum (1980)). Such models have the

property that although they possess very few degrees of freedom, their

outputs can at times pass tests for stochasticity if the inputs and

model equations are not known precisely.

Numerical Experiment

The numerical examples described in this section are intended

to illustrate two points. Firstly, we show, using a time series

typical of those measured in the field, that spectral analysis

techniques (strictly valid only when applied to realizations of

stochastic processes) give quantitatively accurate results when

applied to deterministic time series which are underresolved. Thus,

given short sections of a deterministic time series, fast Fourier

transform techniques, followed by frequency and ensemble averaging of

power estimates, can be used to accurately predict the average power

in a given frequency band.

Secondly, we demonstrate that deterministic models such as

(23) yield similarly accurate predictions of averaged power in a

spectral band, as well as having high coherence and near-zero phase
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with "data" time series and Fourier coefficients, almost independent

of the number of modes used to represent the wave field.

A model data set was constructed with a fixed, large (960),

number of modes evenly spaced in the frequency band 0.0002-0.2344 Hz.

Initial modal amplitudes and phases were determined by Fourier

transforming a 4096 second data record collected at location P6 on 9

September 1980 (see below for an in-depth discussion of this data

set). The model "shoaling region" for the numerical experiment was

considered to be of constant, 5 m depth, and 283 m in horizontal

extent. The 960 modes were taken to represent the initial wave field

exactly, and the waves themselves were assumed to obey equations (23)

identically. The "data set" consisted of Fourier coefficients of sea-

surface elevation D(xj,f) at each of 7 locations xj, obtained by

numerically integrating equations (23) subject to the initial

conditions described above. The constant-depth system has significant

computational advant'ges over the more realisitic sloping-bottom

system. The qualitative nature of the solutions of the flat-bottom

system was not expected to be different from solutions over a mildly

sloping bottom, as in practice, bottom slope terms were numerically

small compared to nonlinear terms under conditions similar to this

data set. The 5 m depth was chosen arbitrarily as being

representative of the physical shoaling region. The 7 on-offshore

positions xj were chosen to correspond approximately to the positions

of sensors in the field experiment.

In the following discussion, each of the time series D(x.,t)

(obtained by inverse transforming the set D(x.,f)) will be considered
3

,* _ _ _ _ _ _ _ _
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a realization of an ergodic process. Each of the series D(x.,t) can

be broken into shorter records, each of length T, represented by

Si(xjtt ,T). Here the subscript i denotes the "record number" of S,

the ith record containing data from times (i-1)T < t < (i)T. Each of

the records Si(xj,t,T) can be FFT'd to yield Fourier coefficients at

the harmonic frequencies n/T, n=1,2..... If this is done for the

records Si(xj,t,T), the coefficients Si(xj,f,T) can serve as initial

conditions for an integration of equations (23), thus generating model

coefficients Fli(x. f,T) and time series Mi(xj,t,T).

If the spectrum of an ergodic process is sufficiently smooth

over a chosen bandwidth l/T, and low frequency energy is sufficiently

small, then equivalent, smoothed, spectral estimates for bandwidth 1/[

can be constructed Ly ens.mble-averaging estimates from records of

length at least T, freque~nct averaging, or a combination of both.

Figure (3) demonstrates that spectral estimates obtained in these ways

are indeed equivalent for the time series D(xj,t) and Si(xj,t,T) for

T=128, 256, 512, and 1024 seconds. Presented are smoothed spectra of

sea-surface elevation (bandwidth=.00781 Hz, 64 dof) at 6 locations xj,

j=2,7. The data spectrum at each location corresponds to spectra

obtained from D(xj,f), frequency-averaged by 32 bands. The other

spectra are derived from Si(xj,f,T) with various values of T, by

ensemble- and frequency-averaging. With the exception of the shortest

record length T=128 seconds, all spectra are quantitatively similar

(for reference, the 90% confidence limits on spectral estimates,

assuming the process D(x.,t) is Gaussian, are also plotted). Although

frequency-merging of power spectral estimates is pointless for known
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Figure 3

Averaged power spectra at 6 positions. "DATA" is from

D(xj f), frequency-averaged by 32 bands. Other spectra

are the result of combinations of frequency- and

ensemble-merging of power estimates from Fourier

coefficients Si(xj,f,T), T=1024, 512, 256, and 128

seconds. The ordinate of all plots is dimensional

frequency (Hz), and the abscissa is spectral density

(cn 2/Hz). All spectra have 64 dof, and the 90%

confidence limits (identical for all plots) are shown for

x 46.3 m.

--- sw --
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deterministic time series, figure (3) demonstrates that for typical,

underresolved data, reasonable estimates of average power in a

frequency band can be obtained by treating the data as a realization

of a stochastic process without being able, in fact, to prove that the

data is random rather than deterministic.

Figure (4) presents a similar comparison between spectra

obtained from the model integrations Mi(xj,f,T) and the data D(xj,f).

Once again, all spectra are quantitatively similar. In fact, smoothed

spectra obtained from Si(xjfT) and Mi(x.'f'T) are virtually

identical over all bands at all locations, even though significant

spectral evolution with x is observed. It thus seems plausible that

for smoothed spectral predictions, the model (23) (and, presumably,

similar models such as (30)) are stable with respect to the number of

modes used to represent the wave field, if initial modal amplitudes

and phases are obtained by Fourier transforming sampled time series

such as Si (x.,t,T).

As the model (23) predicts actual time series or Fourier

coefficients, not just averaged spectral quantities, it is reasonable

to examine the correlation between time series predicted by the model,

and those obtained from the data. In the frequency domain, such

* information is contained in the coherence and phase spectra (Jenkins

and Watts (1969)). If the cross spectrum Cpq(xj,f) between two time

series p and q (with Fourier coefficients F p(x.,f) and F q(x f) is

defined by

Cpq (Xjf) q FF (31)

p 3p

I , . . .i * , i iil I l . . . . . . ' '' ' "



Figure 4

"Model" power spectra. "DATA" is as in figure (3); other

spectra result from averaging of model predictions

N (x.,f,T), T=1024, 512, 256, and 128 seconds.
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(suitably averaged over frequencies and ensembles), then the smoothed

coherence ypq (xf) is defined by

! ypq(Xjf) Cpq(Xj f) CpqXjf

S(x. p (32)
Cpp qq

0 <y <i is a measure of the correlation between bandpassed time series

p and q. The phase e pq(x,f) between the time series is defined

pqCp) 33

11 q (x.,f) = tan -1  (33)
I ~Re(C pq) I

If phases epq are positive, then series p leads series q. Jenkins and

Watts (1969) present approximate confidence limits for coherence and

phase estimates (although, for low coherence, the confidence limits on

phase become meaningless). Confidence limits are a function of the

stability (equivalent dof) of the cross spectral estimates and the

true coherence between the time series, but are independent of phase.

Figure (5) presents smoothed coherence spectra between model

time series M.(x,t,T) and sampled data Six. ,t,T) at the six on-

offshore locations shown in figures (3) and (4) for values of T=1024,

512, and 256 seconds. An overall degradation of coherence between

model predictions and data is observed as sampled record length T

decreases. In all cases, coherence is high in the frequency band

0.075-0.012 Hz, corresponding to the maximum energy portion of the

power spectrum, and coherences are nearly an order of magnitude larger

than would be expected if Mi(xt,T) and Si(xi,t,T) were independent

time series. The phase spectra shown in figure (6), independent of

IA
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Figure 5

Spectra of coherence between model predictions Mt(xj,f,T)

and sampled data Si(x 3 ,f,t) at 6 locations xj, j=2-7, for

T= 1024, 512, and 256 seconds. Averaged bandwidth is

0.0078 Hz. The ordinate on all plots is frequency (Hz),

while the abscissa is coherence (NOT coherence 2). All

plots have the equivalent of 64 dof.

.O"I
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F I

Figure 6

Spectra of relative phase between model predictions

M.(xj,fT) and sampled data S.(x.,f,T) at 6 locations xi,

j=2-7, for T=1024, 512, and 256 seconds. Averaged

bandwidth is 0.0078 Hz. The ordinate on all plots is

frequency (Hz), while the abscissa is relative phase (in

degrees). All plots have the equivalent of 64 dof. A

positive phase indicates that M leads S.

1
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record length T, position xj, and frequency, are consistent with zero

phase lag to within 95% confidence limits (not shown).

Thus, as with smoothed spectral predictions, the model (23) is

relatively insensitive to the number of modes used to represent the

wave field with respect to coherence and phase between model time

series and "data." The frequency and ensemble averaging used to

stabilize power, coherence, and phase estimates is not strictly

applicable if the true process is known apriori to be deterministic.

However, as the concepts of "stochastic" and "deterministic" are

properly defined only for infinite length time series, and as it is

further known that the finite length outputs of some clearly

deterministic systems of equations can be viewed as realizations of a

stochastic process, it is reasonable, in the case of models (30) and

(23), to treat both model predictions and data as realizations of

stochastic processes.

In the following analysis, the deterministic models (30) and

(23) will be used to predict various finite statistics of the surface

gravity wave field in the shoaling region. Inputs to the models, such

as the number of modes, their frequencies, initial amplitudes, and

initial phases, will be obtained from data in arbitrary ways. In all

cases, the time series derivable from model outputs will not be

identical, to experimental precision, with measured data. On an

absolute scale, therefore, the models are incorrect. We have

suggested, however, that for some statistical quantities such as

power, coherence, and phase spectra, the model predictions are not

significantly sensitive to input conditions such as the number of

I-
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modes used to describe the wave field. In addition, it appears that

the time series analysis techniques used are not operationally

sensitive to the deterministic or stochastic nature of the time series

on which they operate, either data time series or those derived from

model outputs. Differences between the outputs of the various models

and data can thus be discussed in terms of the deterministic "physics"

contained (or lacking) in the models.

The Data

Three selected field-data sets have been compared to

predictions of the model. The three sets encompass a wide range of

wave energies and spectral shapes. For each data set, time series

from the on-offshore sensors P1, P6, P8, P11, P1O, WI, W4, and W8 were

broken up into consecutive records of 1024 seconds duration. These

records were then Fourier transformed and, where appropriate, Fourier

coefficients of near-bottom pressure were converted to coefficients of

sea-surface elevation (SSE) using the linear, finite-depth

transformation (Guza and Thornton (1980)). 240 modes evenly spaced in

the frequency band 0.001 - 0.234 Hz were used to represent the wave

field through the shoaling region. The Fourier coefficients of SSE

obtained from sensor P6 in approximately 10 m depth provided initial

modal amplitudes and phases of depth-averaged velocity using the

appropriate linear transformation (28.a) or (14.a). Although this

procedure introduces small errors into the initial conditions, it can

be shown that these errors cannot significantly affect the evolution

of the wave field over distances comparable to the shoaling region.



62

As in the numerical experiment described previously, these initial

conditions were integrated numerically to produce model predictions of

Fourier coefficients at the six onshore positions corresponding to

sensor locations. Although detailed measurements of bottom topography

were available, the numerical integrations were carried out with

assumed constant bottom slope of 2.2%. The initial depth was obtained

directly from the mean pressure at P6 over the record, and thus varies

in accordance with the tides. The assumed linear depth dependence on

on-offshire position allows calculation of the spatial phase Tn(x) in

closed form for both models (30) and (23), thus greatly simplifying

the numerical integrations. As the coupling coefficients and

dispersion relations in (30) and (23) contain only weak depth

dependence, and as the beach of interest is in reality nearly plane,

it is not expected that the results will differ significantly from

those obtained by using real topography in the integrations. Figure

(7) depicts the measured on-offshore topography along the main range

of instruments. It also shows the plane topography used in the

integrations as well as sensor positions.

I
Fourier coefficients of SSE obtained directly from the data

and from model integrations were then compwered in a manner similar to

the numerical experiment, that is, averaged spectra of SSE, coherence

and phase between models and data are shown at various on-offshore

locations. For the three data sets analyzed here, the wave field was

found to be stationary as determined by x2  testing of unsmoothed

spectral estimates (Haubrich (1965)).
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Figure 7

On-offshore bathymetry and sensor locations along the

main instrument transect. The dashed line represents the

plane beach with slope 0.022 used in model integrations.

On-offshore distance (in meters) is relative to an

arbitrary benchmark.

_____ ___ 1
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5 Sept 80

The 5 Sept data set consists of 11 records (11264 seconds)

obtained on a mildly rising tide. It is typical of low energy, (93

cm2 variance measured in 10 m depth), broad-banded (in frequency) wave

conditions common throughout the summer. Figure (8) presents averaged

spectra of SSE calculated from the data at the four locations P1, P6,

WI, and W8. The spectrum is basically flat from approximately 0.125 -

0.25 Hz, with two narrow, but not very energetic, low frequency peaks

centered at 0.053 Hz and 0.077 Hz.

The spectra measured at locations P1 (14 m depth) and P6 (10 m

depth) are virtually identical. This is as expected since linear

shoaling effects are negligible and near resonant triad interactions

are small due to the large mismatch terms in this rather deep water.

From approximately 0.15-0.25 Hz, the spectra exhibit no significant

differences through the shoaling region. From 0.05-0.15 Hz, the

lowest frequency range with significant wind wave energy, spectral

shape does not change appreciably through the shoaling region.

However, there is a smooth, mild increase in spectral density with

decreasing depth.

Figure (9) presents comparisons between data and model

averaged spectra of SSE at six on-offshore locations. At each

location, spectra obtained from the data, model (30) (labelled

"BOUSS"), model (23) (labelled "CONSIS") and linear, finite-depth

theory (LFDT) (labelled "LINEAR") have been plotted. Each spectrum

has 160 dof, and the 90% confidence limits are shown. At all

locations through the shoaling region, LFDT accurately models the

i °



Figure 8

Averaged power spectra of SSE measured at 4 on-offshore

locations. Averaged bandwidth is 0.0039 Hz. Location

names, mean depth (meters) and mean variance of SSE (an2 )

are shown.
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Figure 9

Comparison of averaged power spectra of SSE between

measured data ("DATA"), the model (30) ("BOUSS"), the

model (23) ("CONSIS"), and linear, finite-depth theory

("LINEAR"). Averaged bandwidth is 0.0078 Hz. All model

input conditions were derived from data measured at P6.

Shown under each plot is the location name and its on-

offshore distance from the initial conditions. The

ordinate is frequency (Hz) and the abscissa is spectral

density (om2/Hz). Spectra have the equivalent of 160 dof

and the 90% confidence limit is shown on the plot for P8.
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observed spectrum of SSE. The model (30) is slightly worse only at

frequencies greater than 0.18 Hz, where the model consistently

underpredicts spectral density. These results are in contrast with

model (23), which overpredicts spectral density in a wide frequency

band from 0.12 - 0.24 Hz.

Additional information can be obtained by comparing coherence

and phase spectra between the nonlinear models, LFDT, and the data.

Figure (10) presents smoothed coherence spectra through the shoaling

region. For both LFDT and the nonlinear models, coherence is greater

than 0.9 throughout the low frequency region of the spectrum (0.05-

0.10 Hz). At higher frequencies, the dominant feature of the

coherency spectrum is a pronounced decrease in coherence with

increasing frequency. Such a feature, which is present to some extent

in all the data analyzed to date, is consistent with finite

directional spread of the wave field. Model testing was carried out

assuming a constant depth shoaling region and a wave field obeying

LFDT. Directional spectra E(aO) were obtained from a Maximum

Likelihood (MLE) analysis of data from the shallow array of wavestaffs

W2-W7. Briefly, the cross spectrum at lag r in the on-offshore can be

determined if the wave field is homogeneous and the directional

*1 spectrum E(o,e) is known:

C(r) = f E(a,e) eikr cos(e) de (34)

(Cartwright (2962)). Using the definition (32) of coherence and

calculating the integral in (34) numerically, test coherence spectra

(labelled "TEST" in figure (10)) can be generated. The general shape

of the test coherence spectrum is neither a strong function of the

I A"
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Figure 10

Comparison of smoothed coherence between models (30)

("BOUSS"), (23) ("CONSIS"), and linear, finite-depth

theory ("LINEAR") at the 6 on-offshore locations of

figure (9). Also shown ("TEST") is the coherence

obtained by assuming a uniform, 5 m depth shoaling region

and linear waves with the measured directional spectrum

obtained from the array W1-W2-W3-W4-W5-W6-W7. Test

coherences were only calculated in the band 0.05-0.25 Hz.

The ordinate is frequency (Hz) and the abscissa is

coherence (NOT coherence 2).
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assumed depth nor of the detailed fine structure of the directional

spectrum estimates.

The shapes of the test coherence spectra are quite similar to

the model-data coherences, even including the slight plateau at

approximately 0.15 Hz. The dramatic falloff of the coherence spectrum

with increasing frequency and distance can thus be attributed to the

effects of increased directional spread in the higher frequencies, and

the fact that a given spatial lag represents a larger normalized (by

wavelength) lag for higher frequency waves than for lower frequencies.

Additional model testing with "top-hat" directional spectra indicates

that the second effect is dominant.

There are no significant deviations in coherence between any

of the shoaling models tested. The good agreement for spectral and

coherence predictions between linear and nonlinear models and the data

strongly indicate that net nonlinear effects are small through the

shoaling region for this particular data set. The phase spectra,

presented in figure (11), can thus be interpreted for this data set in

terms of the linear dispersion relations appropriate to the models

(30), (23), and LFDT. It should be born in mind throughout the phase

discussion that confidence limits on phase are dependent on the

coherence, and thus phase estimates at the higher frequencies at the

shallower reaches of the shoaling region are extremely uncertain. As

the coherences for all models are virtually identical everywhere,

confidence limits for all phase estimates at various frequencies have

been indicated on figure (11).

LFDT phases at locations P8 and P11 are nearly consistent with
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Figure 11

Comparison of relative phase spectra between shoaling

models and data. Relative phase is shown in degrees.

90% confidence limits on phase (nearly the same for all

three models) are shown for various frequencies and

locations.

*'1
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zero phase shift at all frequencies. (The very slight trend of

increasing phase with increasing frequency is possibly due to a small

(0(1 meter)) uncertainty in sensor position.) Both the models (30)

and (23) show large deviations from the data, especially at high

frequencies. The model (30) shows a strong tendency to lead the data

while (23) has a lesser tendency to lag the data, although both models

agree well with the data at lower frcquencies. The deviations are

consistent both in sign and magnitude with differences between the

linear dispersion relations (28.b), (14.b), and (2.c). In the case of

model (30), the linear dispersion relation grossly overpredicts

wavenumber for high frequency waves in relatively deep water, as shown

in figure (12). Thus the linear contribution to total phase Yn(X)

will be larger than that predicted by LFDT, and the model will lead

the LFDT prediction. The second order linear phase change term, as

well as the linear dispersion relation, must be taken into account for

model (23). However, the magnitude of the linear phase change term is

insufficient to offset the dispersion relation's underprediction of

wavenumber at high frequencies in deep water (figure (12)), and thus

the observed lag of the model in relation to LFDT (and hence, in this

case, the data).

11 Sept 80

The second data set consists of 20480 seconds of data obtained

on 11 September 1980, over a tidal maximum. With total variance in 10

m depth of over 500 cm2 ,this data set is the most energetic analyzed

for this work. As seen in figure (13), the vast majority of the
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Figure 12

Wavenumber vs. frequency for four linear dispersion

relations at two depths, 10 m (a) and 5 m (b). The

"exact Boussinesq" is equation (28.b), "approximate

Boussinesq" is effective total linear wavenumber for

model (23), "Linear exact" is LFDT, and "Shallow" is

nondispersive shallow-water theory.
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energy in the wave field at depths greater than about 10 m is

concentrated in a narrow (0.016 Hz wide) band centered at 0.065 Hz.

Chapter V contains a discussion of the frequency-directional

characteristics of this data set. This data set is representative of

long period, well-directed swell impinging on the beach. Figure (13)

shows that significant spectral evolution occurs as the waves

propagate shoreward through the shoaling region. In shallow water, a

secondary (but significant) peak is observed centered at 0.127 Hz,

nearly the exact second harmonic of the primary peak. As in the data

set 5 Sept (figure (8)), no significant spectral evolution is observed

between locations P1 in 14.5 m depth and P6 in 10.4 m depth.

Figure (14), similar to figure (9), compares averaged spectral

predictions of the nonlinear models, LFDT, and the data. The smooth,

steady growth of the secondary peak at 0.127 Hz is modeled almost

precisely by the nonlinear models, but not at all by LFDT. As in the

previous data set (5 Sept), the model (23) overpredicts spectral

density in the high frequency ( >0.15 Hz) regions of the spectrur.

while model (30) exhibits a considerably smaller underprediction at

high frequency. Except for frequencies near the secondary peak, LFDT

accurately predicts spectral shape. However, LFDT overpredicts the

power at the spectral peak " '0% (compared to only a 5%

overprediction by model (30)). n;s :,ct lends credence to the

hypothesis that the secondary peak is due to nonlinear transfers of

energy from the primary low frequency peak to its second harmonic.

Coherence spectra are shown in figure (15). As in the case of

the 5 Sept data set, the drop in coherence with increasing frequency



Figure 13

Measured power spectra of SSE for 11 Sept data set.

(Similar to figure (8)).
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Figure 14

Comparison of averaged power spectra for 11 Sept data

set. (Similar to figure (9)).
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Figure 15

Smoothed coherence spectra for 11 Sept data set.

(Similar to figure (10)). Flat-bottom, directional test

coherences are not shown.
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and distance from the initial point (P6) agrees well with coherence

predicted by the directional spectra. In all cases the nonlinear

model coherences do not differ significantly from each other, but are

substantially different from LFDT at the secondary peak in the power

spectrum. As the peak develops, the coherence between LFDT (which

does not predict development of the secondary peak) and the data

becomes progressively lower. Conversely,the coherence at 0.127 Hz

between nonlinear models and the data is substantially higher on 11

Sept than it is for the 5 Sept data set (figure (10)). The drop in

coherence for LFDT is restricted to the same frequency band as the

secondary peak in the power spectrum; at frequencies higher and lower,

there is no significant difference in coherence between linear and

nonlinear models. A slight exception to this is seen at location W8,

at frequencies near 0.20 Hz. A mild increase in coherence of the

nonlinear models is not present in the linear model. Although the

deviation between nonlinear and linear model coherences is notm

significant at the 95% confidence level, the fact that it occurs at

the third harmonic of the crimary, energetic peak in the power

spectrum is indicative of nonlinear transfers of energy to the third

harmonic via near resonant interactions between the primary and

secondary peaks.

At locations P8 and P11, in relatively deep water where little

spectral evolution is observed and coherences between all models and

the data are high, the phase spectra of all models (figure (16)) are

virtually identical to those of the 5 Sept data set (figure (11)). As

in the discussion for 5 Sept, phase deviations can be attributed to

*1
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Figure 16

Spectra of phase between models and data for 11 Sept data

set. (Similar to figure (11)).
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linear dispersion differences between the models. With the exceptions

of the frequency band about 0.127 Hz for LFDT and the narrow band

about 0.20 Hz for the model (30), relative phases between models and

data are similar to those observed in the 5 Sept data set throughout

the shoaling region.

The most striking differences between data sets occurs in the

frequency band about 0.13 Hz, where LFDT increasingly leads the data

as one progresses through the shoaling region. It must be remembered

that in this band, coherence between LFDT and the data is quite low;

thus confidence intervals for phase increase, in this case, to ±350 at

W8. Even considering this, the deviation is significant at all on-

offshore locations. As no significant phase deviations between

nonlinear models and data are observed in this band, it must be

concluded that there is a nonlinearly-induced phase change in addition

to the observed power spectral transfers. The change is such that the

phase speed of the second harmonic is greater than that of a free,

linear wave with the same frequency.

A second difference between this data set and 5 Sept is

apparent near 0.20 Hz for the model (30) at the most shoreward

locations W4 and W8. Rather than a smoothly increasing phase

difference as would occur with waves obeying LFDT dynamics, the phase

difference between model and data drops nearly to zero in this

frequency band. This band is the third harmonic of the primary, and a

slightly increased coherence between (30) and the data was observed as

well. The phase results further confirm that nonlinear interactions,

probably between the primary and the now large second harmonic, are
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present in this band. Since the amplitude of the third harmonic is

small, substantial phase modifications can take place (cf. equation

(30.b)), and thus the actual phase in the band can be substantially

coupled to the phase of the primary and second harmonic (which are

predicted well by the nonlinear models), rather than the phase

dictated by the linear dispersion relation.

9 Sept 80

The 9 Sept data set exhibits the most complicated evolution of

any of the data so far analyzed. Composed of 17408 seconds of data

obtained on a falling tide, the variance of SSE at 10 m depth

(measured at 275 cm2 ) falls between the low variance of 5 Sept and

the high variance of 11 Sept. The power spectrum of SSE is dominated

by a broad, energetic peak centered at 0.09 Hz. The high frequency

(>0.15 Hz) spectrum in depths greater than 10 m is flat and nearly 2

orders of magnitude down from the peak. Figure (17) shows data

spectra through the shoaling region. As in the other data sets, there

is no spectral evolution in depths greater than 10 m. However,

through the shoaling region, the entire high frequency portion of the

spectrum grows so that in 4 m depth, spectral densities are 5 - 10

times greater than in 10 m depth in the frequency band 0.15 - 0.21 Hz.

As in the 11 Sept data set, the nonlinear models accurately

predict spectral evolution through the shoaling region, while LFDT

does not (figure (18)). Although the model (23) appears to predict

power spectral density more accurately than model (30) at frequencies

greater than 0.17 Hz, the consistently large (20% - 40%)
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Figure 17

Measured power spectra of SSE for 9 Sept data set.

(Similar to figure (8)).
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Figure 18

Comparison of averaged power spectra for 9 Sept data set.

(Similar to figure (9)).
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overprediction of spectral density in the band 0.09 - 0.17 Hz by model

(23), not present in model (30) predictions, makes (30) a more

accurate overall predictor of spectral shape. Of some interest is the

fact that the evolution of the spectrum begins with the emergence of a

(nonsignificant at the 90% level) peak at 0.19 Hz, the second harmonic

of the highest energy portion of the broad, low frequency spectral

peak. The emergence of such a structure is not unexpected, aF the

peak-peak-harmonic triad interaction is expected to dominate early

spectral evolution due to the larger amplitudes found at the peak of

the power spectrum. The importance of off-peak interactions is clear,

however, as in the shallower portions of the shoaling region the

entire high frequency end of the spectrum has increased significantly.

The coherence spectra shown in figure (19) are further

evidence of the complicated evolution of the wave field as it

propagates through the shoaling region. Apart from the barely

significant coherence peak at 0.19 Hz apparent in models (30) and

(23), the basic shape of all coherence spectra at locations P8 and P11

is again consistent with measured directional spectra. At all

locations, all models have high coherence in the energetic region of

frequency space (0.063 - 0.125 Hz). However, at locations P1O through

W8, significant deviations between models are evident in the high

frequencies. Coherence between LFDT and the data drops dramatically

with decreasing depth, first in the band 0.13-0.20 Hz, then throughout

the high frequency region. At the same time, coherence between the

nonlinear models and the data actually increases significantly in the

high frequency region. Such an effect is clearly not due to finite

.4
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Figure 19

Smoothed coherence spectra for 9 Sept data set. (Similar

to figure (10)). Flat-bottom, directional test

coherences are not shown.
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directional spread in a homogeneous, linear, wave field, but must be

attributed to the fact that the high frequency wave field is dominated

by nonlinear interactions with lower frequency components.

The nonlinearities are also evident in the phase spectra

(figure (20)). Phases at locations P8 and P11 evolve similarly to

those of previous data sets, in accordance with simple LFDT

dispersion. At the shallower locations P1O through W8, the breakdown

of linear dispersion is clear. The phase relationship between linear

theory and the data at high frequencies is neither monotonic nor

consistent with zero phase lag (although once again it must be

remembered that coherence is low in this region of frequency space).

In terms of phase speed, some frequency components appear to be

travelling faster than predicted by LFDT, and some slower! Rather

than model (30) leading the data in the high frequencies, as predicted

by linear dispersion arguments and observed in the basically linear 5

Sept data set (figure (11)), the model actually lags the data

slightly. The model (23) phases exhibit none of the sharp lag

predicted by linear dispersion, but instead are nearly identical with

phases predicted by model (30). It thus appears that nonlinear

interactions, properly modeled by both (30) and (23), completely

dominate the high frequency portion of the wave field in this

particular data set.
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Figure 20

Spectra of phase between models and data for 9 Sept data

set. (Similar to figure (11)).
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V. DISCUSSION AND CONCLUSIONS

The present work has developed and tested models decribing the

changes undergone by wind-generated surface waves (4-18 second

periods) as a broad spectrum of such waves propagates shoreward over a

shoaling bottom. Two, one-dimensional models based on variants of the

Boussinesq equations and incorporating the physics of multiple near

resonant triads have been derived and implemented numerically. The

models, which assume that all waves are normally incident to the

beach, have no empirically determined parameters.

A field experiment involving dense instrumentation of the

shoaling region from 10 m depth to 3 m depth was successful in

obtaining detailed measurements over a wide range of wave conditions.

Three selected data sets spanning the range of observed wave

conditions and spectral evolution have been analyzed in depth and

compared with power spectra, coherence, and phase predictions of the

two nonlinear shoaling models and linear, finite-depth theory.

Overall, both nonlinear models were good predictors of the

power spectrum of sea-surface elevation throughout the shoaling

region. Linear theory was considerably less accurate except under

broad-banded, low energy conditions. Coherence between predictions of

all models and the data was uniformly high in the low-frequency

teenerally energetic) region of the wind-wave band. With the

exception of those regions of space (both physical and frequency)

where significant nonlinear evolution of the spectrum was taking

place, the features of all model-data coherence spectra were similar

and adequately accounted for by the measured directional spread of the

101 I '
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wave field. Where nonlinear effects were important (shallow water,

mid- to high-frequencies), coherences between the nonlinear models and

the data improved markedly compared to "linear" regions of the

spectrum, while coherence between linear, finite-depth theory (LFDT)

and the data became dramatically worse. In spatial regions where

nonlinear effects are small, LFDT is an accurate predictor of phase

across the entire wind-wave spectrum. In these regions, phase

deviations between the nonlinear models and the data can be ascribed

to differences in linear dispersion relations; the long wave

assumptions inherent in the derivation of the Boussinesq-type models

make them poor predictors of wavenumber for high-frequency waves in

relatively deep water. Where nonlinear effects are important in the

evolution of the power spectrum, the nonlinear models are good

predictors of phase whereas LFDT is significantly poorer, indicating

that nonlinear phase changes (which can, for instance, generate the

observed asymmetrical shape of waves near breaking) are as evident as

the more often documented nonlinear energy transfers.

The accurate predictions of the nonlinear shoaling models over

a broad range of input wave conditions makes them especially

appealing. Some specific data sets (eg. 5 Sept, figures (8) to (11))

are predicted well by LFDT. The evolhtion of harmonics in some data

sets (eg. 1.1 Sept, figures (13) to (16)) is reminiscent of Stokes-type

forced theories (although the similarity is merely illusory as the

Ursell number in 5 m depth is greater than 1). In all cases so far

observed, the more general nonlinear shoaling models (23) and (30)

accurately predict the observed spectral evolution of thp wave field

I .3K
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Figure 21

Frequency-directional spectra in the wind-wave band for

the 11 Sept data set. The top spectrum is obtained from

MLE analysis of the two-dimensional deep array shown in

figure (2), excepting the nonfunctional current meter.

The bottom spectrum results from a similar analysis of

the linear shallow array of wavestaffs W2-W7. 7 14e(,Pmenl.

inaccuracies resulted in staffs W2 and W7 ielng far

enough shoreward and seaward (respectively) of the

longshore line to allow for resolution of onshore- vs.

offshore-propagating energy. Scaling is such that at any

frequency, the total area under the curve is proportional

to log(spectral density) in that band.
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through the shoaling region; in the three data sets analyzed here in

depth, the nodels properly predict nonlinear phase evolution as well.

Directional effects appear to play little role in the

nonlinear evolution of the data sets analyzed here. In part this is

due to the fact that Torrey Pines Beach has few open windows to the

deep ocean, and thus energetic low- and mid-frequency waves tend to

have narrow, well-defined directional spectra. More generally,

however, these waves refract considerably before entering the

relatively shallow water of the shoaling region, and thus the

extremely broad directional distributions typical of the open ocean

are not expected.

Figure (21) shows two, averaged, frequency-directional spectra

from the 11 Sept data set. The top figure displays data obtained from

the two-dimensional deep array (see figure (2)). Note that the energy

in the low-frequency peak of the power spectrum (0.065 Hz) is directed

from approximately 15 0 south of true west, and has a width of only

250. It is likely that this swell is being generated by a distant

storm in the southern hemisphere. Pawka (1981) discusses details of

the directional spectrum for similar data sets. Of interest to the

present study is the fact that, although the majority of the energy at

frequencies greater than 0.10 Hz is directed from the northern

ouadrant, approximately half of the energy at the harmonic frequency

(0.127 Hz) is directed from the south, similar to the low frequency

primary. The effect is enhanced in the data from the shallow array,

shown in the lower half of figure (21). In general, directional

spreads measured at the shallow array are narrower than at the deep
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array, as expected on the basis of simple linear refraction. At the

harmonic frequency b,;'d, the vast majority of the energy comes not

from the north but from the south. This is expected if, as

hypothesized in Chapter IV, the energy in the harmonic peak is due

primarily to nonlinear transfers via peak-peak-harmonic triad

interactions. As the resonance condition (15.b) is a vector equation,

any peak-peak-harmonic interaction will force a harmonic wave whose

wavenumber points in the direction of the peak waves.

The directional spectra also provide preliminary bounds on the

amount of seaward-propagating energy in the shoaling region. Direct

integration of directional spectral estimates in the frequency range

0.059-0.152 Hz for all data sets reveals that at no time is more than

-25% of the total energy in any band propagating westward in the window

450 - 135 0 at the shallow array, and less than 20% at the deep array.

Average values of seaward-propagating energy are approximately 17% for

the shallow array and 14% for the deep array. However, model testing

of the MLE estimator indicates that the data-adaptive analysis

*i technique has a tendency to window incoming energy incorrectly into

outgoing directions for the arrays in this experiment. The model

tests suggest that there is a strong possibility that the true amount

of outgoing energy is negligible (in the range 0-10% of total energy)

at frequencies in the wind-wave band. The predictions of the one-

dimensional shoaling models clearly are not significantly affected by

such small amounts of outgoing energy. Should a more quantitative

description of seaward-propagating energy be desired, a special-

purpose analysis window with minimal windowing error of incoming to
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outgoing energy, similar to those discussed in Davis and Regier (1977)

and Pawka (1981), should be implemented.

The role of the sloping bottom is found to be of only minor

importance in determining spectral evolution of the wave field through

the shoaling region. Comparison of power spectral results from the

numerical experiment (figure (4)) with those from the 9 Sept data set

(figure (17)) from which initial conditions for the flat-bottom

numerical experiment were drawn, shows that the qualitative nature of

the evolution of the spectrum is similar in both cases. Bottom slope

appears explicitly only in the linear shoaling terms in (30) and (23),

and implicitly in the calculation of total phase necessary to

determine the trigonometric modulation of the nonlinear coupling.

Differences between the linear shoaling terms, due to differences

between linear dispersion relations, account for much of the deviation

between power spectral predictions of models (30) and (23), and the

data. This is true of all frequencies in the 5 Sept data set and at

those (generally very high) frequencies in other data sets where

nonlinear spectral evolution is not apparent. In a given frequency

band, linear shoaling predicts that the ratio of energies at two

depths (neglecting refractive effects) is inversely proportional to

the ratio of group velocities (defined as . ) at those depths. The

nondispersive form of the dispersion relation (14.b) overpredicts (in

comparison to LFDT) the ratio of linear group velocities

C (deep)/C (shallow)
g g

and hence overpredicts the ratio

Etot(shal low)/Eto t(deep)
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over most of the wind-wave band. Conversely, the Bousslnesq

dispersion relation (28.b) underpredicts the ratio

C (deep)/C (shallow)

but remains within 10% of LFDT for frequencies less than 0.17 Hz

everywhere in the shoaling region. (Care must be taken when

attempting to isolate the effects of individual terms in the rate

ectuations. Since the models (30) and (23) allow weak nonlinear

interactions across all frequencies, a misprediction in the evolution

equations, even if confined initially to a small band of frequencies,

can feed back through the nonlinear coupling to cause errors at other

frequencies and other on-offshore locations.)

The observed lack of power spectral evolution between 14 m

depth (P1) and 10 m depth (P6) strongly indicates that the process of

triad near resonance modeled by (30) and (23) is in fact confined to

the relatively shallow shoaling region. Although the models are not

valid in depths much greater than 10 m due to breakdown of the long

wave assumptions over much of the wind-wave frequency band, the trend

toward increasing inability to satisfy the resonance conditions for

triads containing high-frequency waves suggests that the triad

resonance mechanism is unimportant in such relatively large depths.

That this is observed in the data bodes well for future attempts to

smoothly match the present model with one more appropriate to deeper

water.

Finally, it should be noted that the numerical integration of

highly resolved spectra is extremely time consuming and therefore

(perhaps prohibitively) expensive. A typical day's data takes
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approximately 100 hours to be integrated on a fast (Perkin-Elmer 8/32)

minicomputer with highly optimized code. The present results, coupled

with analysis of the structure of models (30) and (23), suggest some

simpl ifications.

Clearly, for broad-banded, low energy wave conditions, weakly

nonlinear resonant interactions are small compared with linear

effects. As the phase comparisons on 5 Sept showed, it is

advantageous to use LFDT due to its apparently more accurate

dispersion relation at all freauencies through the shoaling region.

Quantitative limits on "broad-banded" and "low energy" have not been

establ ished.

Narrow-banded input spectra, such as 11 Sept, tend to

concentrate nonlinear effects at the harmonics of the input peak

frequency. This is due to the fact that the product of amplitudes in

the nonlinear term is large for triads involving two large-amplitude

modes. Although the net effect of a large number of interactions with

low energy modes cannot be ignored on ordering grounds, it appears

that in practice large amplitude, peak-peak-harmonic interactions

dominate the evolution of harmonic bands. A code in which LFDT is

used to predict evolution away from the harmonic bands coupled with

high resolution nonlinear evolution at the harmonics is expected to be

a good predictor of the shoaling transformation. Note that the second

harmonic band should be approximately twice the width of the primary

band, etc. Work is currently proceeding along these lines.

7
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